Proceedings
International Conference on Best Practices for ULTRATHIN and THIN Whitetoppings

Denver, Colorado
April 12 - 15, 2005
International Conference on Best Practices for Ultrathin and Thin Whitetoppings

April 12–15, 2005
Denver, Colorado

Sponsored by

Federal Highway Administration
Colorado Department of Transportation
American Concrete Pavement Association
Transportation Research Board
International Society for Concrete Pavements
DISCLAIMER

The information presented at the Denver conference and contained in these proceedings does not represent any formal endorsement of techniques, materials, or processes by the sponsoring organizations. The information presented in these proceedings should be used judiciously by experienced concrete pavement technologists.
CONTENTS

Foreword .. 7
Acknowledgments .. 9

The Colorado Experience
Whitetopping Experiments in Colorado (Synopsis)
 Ahmad Ardani, Colorado Department of Transportation 13
Life-Cycle Cost Analysis of Thin Whitetopping
 Greg Lowery, Colorado Department of Transportation 16
Colorado State Highway 83 Parker Road Thin Whitetopping Project (Synopsis)
 Jeffrey K. Allen, Colorado Department of Transportation 34
Wadsworth Boulevard Whitetopping, Littleton County
(Synthesis)
 Kevin Sullivan, Colorado Department of Transportation 38

Regional Experience
Ultrathin Overlays, Standing the Test of Time
 James K. Cable, Iowa State University .. 45
UTW in California and Nevada—A 13-Year Performance Perspective of Performance Based on Joint Spacing,
Thickness, and Traffic Loading
 David J. Akers, California Nevada Cement Promotion Council,
 and Rich Warren, Southern Nevada Concrete and
 Aggregate Association ... 59
Performance of Florida’s First Whitetopping Project
 Jamshid Armaghani, Florida Concrete and Products Association,
 and Roger Schmitt, Florida Department of Transportation 71
The Illinois Whitetopping Experience, A Practical Approach
 Thomas J. Winkelman, Illinois Department of Transportation77
Thin Concrete Overlays of Composite Pavements in
Southeast Michigan (Synopsis)
 Kerry Sutton, Michigan Concrete Paving Association 106
Application of High-Performance Concrete Overlays (Whitetopping) for Safety at Signalized Intersections (Synopsis)
Colin A. Franco, Francis J. Manning, and Michael D. Sock, Rhode Island Department of Transportation.................................114

Whitetopping: Atypical Is Typical

Field Testing, Research, and Development
Dynamic Behavior of Ultrathin Whitetopping Structure With High-Strength Concrete Under Traffic Load
Tatsuo Nishizawa, Ishikawa National College of Technology; Hiroyuki Obata, Taiheiyo Cement Co; Iwao Sasaki, Public Work Research Institute; and Katsuro Kokubu, Tokyo Metropolitan University...151

Reflective Crack Problem on Whitetopping and Its Repair
Jiwon Kim, Total Pave System Co. Ltd., and Yoon-Ho Cho, Chung-Ang University ..176

Key Findings From NCHRP Synthesis of Highway Practice 338: Thin and Ultrathin Whitetopping (Synopsis)
Robert Otto Rasmussen and Dan K. Rozycki, The Transtec Group, Inc...194

Analysis of Composite Pavements Under Moving and Static Wheel Loads From a Heavy-Vehicle Simulator
M. Wasantha Kumara and Mang Tia, University of Florida; Chung Lung Wu, MACTEC Engineering and Consulting, Inc.; and Bouzid Choubane, Florida Department of Transportation...197

Behavior of Ultrathin Whitetopping Over Composite Pavements Exposed to Large-Scale Accelerated Loading
Scott A. Newbolds, Indiana Department of Transportation; Khaled A. Galal, Virginia Transportation Research Council; Jan Olek, Purdue University; and Tommy Nantung, Indiana Department of Transportation217

Best Practices for the Design and Repair of Thin and Ultrathin Whitetopping Based on Mn/ROAD Findings
Julie M. Vandenbossche, University of Pittsburgh242
Forensic Investigation of Ultrathin Whitetopping Test Sections at the Mn/ROAD Project (Synopsis)
 Thomas R. Burnham, Minnesota Department of Transportation ... 262

Necessity of Existing Pavement Evaluation in Successful Ultrathin Whitetopping Implementation

Incorporation of Probabilistic Concepts into Fatigue Analysis of Ultrathin Whitetopping as Developed for the American Concrete Pavement Association

Results from Concrete Pavement Technology Program Task 3 Project on the Performance and Design of Whitetopping Overlays on Heavily Loaded Pavements (Synopsis)
 Robert Otto Rasmussen, The Transtec Group, Inc.318

Results of a Forensics Evaluation of the Ultrathin Overlays at the FHWA ALF Conducted Under Concrete Pavement Technology Program Task 5 (Synopsis)

Repair of Ultrathin Whitetopping
 Steven M. Waalkes, American Concrete Pavement Association.....323

AIRPORT APPLICATIONS

Thin Whitetopping Application at Williamsburg Regional Airport and Other Thin Whitetopping Airport Applications
 Gary L. Mitchell, American Concrete Pavement Association329

Thin Whitetopping at Fernandina Beach Airport
 Jamshid Armaghani, Florida Concrete and Products Association; Roland Luster and Charles Holzschuhler, Florida Department of Transportation, and Jamie Greene, Applied Research Associates, Inc..337
FOREWORD

These are the proceedings of the International Conference on Best Practices for Ultrathin and Thin Whitetoppings, organized by the Federal Highway Administration in cooperation with the Colorado Department of Transportation and the American Concrete Pavement Association. The conference was also co-sponsored by the Transportation Research Board and the International Society for Concrete Pavements.

Whitetopping is referred to as the resurfacing of an existing distressed asphalt pavement with concrete. Conventional whitetopping (conventional concrete pavement placed directly over an existing asphalt pavement) has a long history of use, and the practice is well established. However, of recent origin are the whitetopping techniques that depend on the bond between the concrete resurfacing and the existing asphalt pavement surface (typically milled). These bonded whitetoppings typically involve thinner concrete resurfacing and shorter joint spacing. The bonded whitetoppings are categorized as ultrathin whitetopping (UTW), a concrete surface thickness ranging from 51 to 102 mm (2 to 4 in.), and thin whitetopping (TWT), a concrete surface thickness ranging from 102 to 152 mm (4 to 6 in.).

The first UTW project in the United States was demonstrated in 1991. Since then, the use of UTW and TWT has exhibited significant growth in the United States as well as in other countries. For specific applications and service life requirements, well designed and well constructed UTW and TWT appear to provide satisfactory performance. This conference was organized to provide an international forum to review the progress in the UTW and TWT technologies since 1991, and to help identify the best practices for candidate project selection, design, construction, and repair of UTWs and TWTs.

As these proceedings indicate, the conference program consisted of presentations and discussions on new developments related to the UTW and TWT technologies and lessons learned over the last decade in the use of these technologies. Implementable design and construction techniques that result in long-lasting UTW and TWT
were the focus of the conference. The proceedings should be of special interest to city and county engineers, airport agencies, and related professionals who are using or contemplating the use of UTW and TWT.

Included in the proceedings are papers prepared for the conference and synopses of presentations. The papers were peer-reviewed for technical content, and the editors thank the many reviewers who participated in the review process.

Editors:
Shiraz Tayabji, Ph.D., P.E.
CTLGroup, Columbia, Maryland, USA;
stayabji@ctlgroup.com
Kurt Smith, P.E.
Applied Pavement Technology, Inc.;
ksmith@pavementsolutions.com
ACKNOWLEDGMENTS

Conference Sponsors

The following agencies co-sponsored the Best Practices conference:

- Federal Highway Administration
- Colorado Department of Transportation
- American Concrete Pavement Association
- Transportation Research Board
- International Society for Concrete Pavements

Conference Host

The Colorado Local Technical Assistance Program (LTAP), based at the University of Colorado, Boulder, hosted the conference and provided planning support for the conference. Lindsay Nathaniel served as LTAP’s representative for the conference.

Conference Steering Committee

The conference Steering Committee consisted of the following:

Ahmad Ardani, Colorado Department of Transportation,
Denver, Colorado (Chair)
Shiraz Tayabji, CTLGroup, Columbia, Maryland (Secretary)
Mike Ayers, American Concrete Pavement Association,
Skokie, Illinois
Tom Harman, Federal Highway Administration, McLean, Virginia
Bernie Kuta, Federal Highway Administration, Denver, Colorado
Sam Tyson, Federal Highway Administration, Washington, DC

Contact for the Conference and Proceedings

Shiraz Tayabji, CTLGroup, (410) 997-0400, stayabji@ctlgroup.com