National Conference on Preservation, Repair, and Rehabilitation of Concrete Pavements
St. Louis, Missouri
April 22–24, 2009

Sponsored by:
Federal Highway Administration
and
American Association of State Highway and Transportation Officials
American Concrete Pavement Association (ACPA)
Cement Association of Canada
Chapter/State Division of ACPA
International Grooving and Grinding Association
International Society for Concrete Pavements
Missouri Department of Transportation
Missouri/Kansas Chapter of ACPA
National Concrete Pavement Technology Center
Portland Cement Association
Transportation Research Board

Concrete Pavements—Safer, Smoother, Longer Lasting
Proceedings

National Conference on Preservation, Repair, and Rehabilitation of Concrete Pavements

St. Louis, Missouri
April 21–24, 2009

Sponsored by:
Federal Highway Administration
and
American Association of State Highway and Transportation Officials
American Concrete Pavement Association (ACPA)
Cement Association of Canada
Chapter/State Division of ACPA
International Grooving and Grinding Association
International Society for Concrete Pavements
Missouri Department of Transportation
Missouri/Kansas Chapter of ACPA
National Concrete Pavement Technology Center
Portland Cement Association
Transportation Research Board
Disclaimer

The information presented at the St. Louis conference and contained in these proceedings does not represent any formal endorsement of techniques, materials, or processes by the sponsoring organizations. The information presented in these proceedings should be used judiciously by experienced concrete pavement technologists.
Table of Contents

Foreword... v

Acknowledgments ... vi

Part 1—Pavement Condition Evaluation, Impact, and Durability

Minimizing Reflective Cracking With Applications of the Rolling Dynamic Deflectometer and Overlay Tester
Dar-Hao Chen, Moon Won, Tom Scullion, and John Bilyeu... 3

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance
Michael I. Darter, Jag Mallela, and Leslie Titus-Glover... 15

Concrete Pavement Patching—Simpler Can Be Better
Jim Grove, Jim Cable, and Peter Taylor.. ... 31

Forensic Evaluation of Cracking in Panels Adjacent to Panel Replacements on Interstate 5 in Washington State
Linda M. Pierce, Jeff S. Uhlmeyer, Jim Weston, and Keith W. Anderson .. 41

Part 2—Concrete Pavement Preservation, Repair, and Rehabilitation

Restoration of New PCC Pavement With Uncontrolled Cracking in Missouri
John P. Donahue.. 55

California’s Perspective on Concrete Pavement Preservation
Shakir Shatnawi, Mary Stroup-Gardiner, and Richard Stubstad .. 71

New Applications for Thin Concrete Overlays: Three Case Studies
Shiraz Tayabji, Andrew Gisi, Jason Blomberg, and Dan DeGraaf ... 87

Optimization of Concrete Maintenance to Extend Pavement Service Life
Craig White and David K. Hein ... 101

Evaluation and Decision Strategies for the Routine Maintenance of Concrete Pavement
Youn su Jung, Dan G. Zollinger, and Thomas J. Freeman ... 117

Pavement Preservation for High Traffic Volume PCC Roadways: Phase 1 Findings From SHRP 2 Project R26
David Peshkin, Angie Wolters, Cesar Alvarado, and Jim Moulthrop.. 133

Performance of Edge Drains in Concrete Pavements in California
Biplab B. Bhattacharya, Michael P. Zola, Shreenath Rao, Karl Smith, and Craig Hannenian 145
Part 3—Concrete Pavement Repair Techniques and Experiences

Retrofit Dowel Bars in Jointed Concrete Pavement—Long-Term Performance and Best Practices
Thomas Burnham and Bernard Izevbekhai ..161

Life Cycle Cost Analysis of Dowel Bar Retrofit
Nicholas J. Santero, John T. Harvey, Erwin Kohler, and Bill Farnbach ...183

Load Transfer Restoration—A Survey of Current Practice and Experience
Linda M. Pierce ..207

Highway Panel Replacement—CSA Concrete in California
Chris Ramseyer and Vincent Perez ..223

Part 4—Concrete Pavement Surface Texture

Effect of Diamond Grinding on Noise Characteristics of Concrete Pavements in California
Shubham Rawool and Richard Stubstad ..235

Finding Buried Treasure With Diamond Grinding of a Concrete Pavement
After Removal of an Asphalt Overlay
Daniel P. Frentress ...249

Development of the Next-Generation, Low-Maintenance Concrete Surface
Larry Scofield ..269

Tire–Pavement Noise Results From California PCCP and HMA Pavements
Erwin Kohler, Linus Motumah, Bruce Rymer, and John Harvey ..287

Part 5—Emerging Pavement Repair and Rehabilitation Technologies

I-15 Ontario Project: Technology Implementation for Accelerated Concrete Pavement Rehabilitation
Eul-Bum Lee, Seungwook Lim, Jonathan C. Hartog, and David K. Thomas ..303

Precast Concrete Pavement for Intermittent Concrete Pavement Repair Applications
Shiraz Tayabji, Neeraj Buch, and Erwin Kohler ..317

Evaluation of Concrete Pavement Repair Using Precast Technology in Virginia
Shabbir Hossain and Celik Ozyildirim ...335

Use of Vitreous-Ceramic Coatings on Reinforcing Steel for Pavements
Charles A. Weiss, Jr., Sean W. Morefield, Philip G. Malone, and Michael L. Koenigstein349
Foreword

Well-designed and well-constructed concrete pavements can be expected to provide low-maintenance service life, well exceeding the as-designed service life. The majority of pavements in the U.S. Interstate and primary systems were designed on the basis of a 20- to 25-year initial service life, and many miles of these pavements are in service after more than 30 to 35 years. However, concrete pavements do deteriorate with time and traffic loadings and because of concrete material failures. But, sound corrective measures performed in a timely manner can greatly extend the service life of existing concrete pavements. These corrective measures include preservation treatments, repair/restoration activities, and rehabilitation. The goal of the corrective measures is to extend the useful life of concrete pavements (structural capacity and functional characteristics) with the least life cycle costs. Timely preservation activities can delay the need for repairs, and timely repairs can delay the need for rehabilitation. Delays in timely preservation, repair, and rehabilitation (PRR) or improper PRR activities can lead to pavements that are in such poor condition that the only option remaining is reconstruction, which is more costly.

Over the last two decades, there has been much progress in developing effective PRR techniques. However, many gaps remain, and many practices are not implemented consistently from one region to another. An important technical limitation is associated with our ability to rationally determine what treatments need to be performed at what stage in the pavement’s life and what are the consequences of delaying needed treatments. In today’s environment, where the highway agency budgets cannot fully meet the needs for managing pavement assets yet there is no lessening in traffic growth and public expectations, it is important that the limited funds available to maintain our highway systems are expended in an optimal manner.

This 2 1/2-day National Conference on Preservation, Repair, and Rehabilitation of Concrete Pavements was organized as a part of technology transfer activities conducted under the U.S. Concrete Pavement Technology Program, which operates within the Federal Highway Administration. The conference objective was to provide a national forum to address the technology needs related to the PRR of concrete pavements.

The editor would like to thank the authors for supporting the objective of this conference by developing comprehensive papers related to the conference themes. The papers included in the proceedings were peer-reviewed for technical content, and the editor would also like to thank the conference steering committee members and the many reviewers who participated in the paper review process.

Editor:

Shiraz Tayabji, Ph.D., P.E.
Chair, Conference Steering Committee; stayabi@aol.com
Senior Consultant, Fugro Consultants, Inc.
ACKNOWLEDGMENTS

Conference Financial Sponsors

The following agencies co-sponsored the National Conference on Preservation, Repair, and Rehabilitation of Concrete Pavements:

Federal Highway Administration
and
American Concrete Pavement Association
International Grooving and Grinding Association
Missouri/Kansas Chapter, ACPA
National Center for Concrete Pavement Technology

Conference Steering Committee

The Conference Steering Committee consisted of the following:

Shiraz Tayabji, Fugro Consultants, Inc., Columbia, Maryland (Chair)
Michael Brinkman, New York State DOT, Albany, New York
Bouzid Chubane, Florida Department of Transportation, Gainesville, Florida
Angel Correa, Federal Highway Administration, Atlanta, Georgia
Bill Davenport, American Concrete Pavement Association, Skokie, Illinois
John Donahue, Missouri Department of Transportation, Jefferson City, Missouri
Joseph Huerta, Federal Highway Administration, Baltimore, Maryland
Tom Kazmierowski, Ministry of Transport, Ontario, Canada
David Lippert, Illinois Department of Transportation, Springfield, Illinois
Sam Tyson, Federal Highway Administration, Washington, D.C.
Jeff Uhlmeyer, Washington State Department of Transportation, Olympia, Washington
Moon Won, Texas Technological University, Lubbock, Texas

Contact for the Conference and Proceedings

Shiraz Tayabji, Fugro Consultants, Inc., 410-997-9020, stayabji@aol.com